Jump to content

Nicolaes Witsen's 'example ship', which Nicolaes identifies as a pinas, is not a pinas.

Recommended Posts

One of the strangest remarks, made by Nicolaes Witsen in his books (1671 and 1690), is what he states in chapter eighteen:


“Het Schip hier in gedachten gebouwt is noch van de wydtste noch van de naauwste slagh; welke maat met voordacht is genoomen, om zoo wel een Oorlogh- als een Koopvaardy-schip te vertoonen”,

“The ship built here in mind is nor the widest nor the narrowest kind; which size is chosen deliberately, to be able to represent a warship as well as a merchant ship”.


This statement is an echo of an earlier statement Nicolaes makes at the beginning of chapter eight:


“Hier toe laat een Pynas - schip, (by gedachten gebouwt) lang over steven 134 Amsterdamsche voeten, en in al zyn deelen ontleedt, tot voorbeeldt dienen”,

“To this end a pinas ship (built in mind) long over stem and stern 134 Amsterdam feet, and dissected in all its parts, serves as an example”.


These sentences contain the same remark; “built in mind” suggesting Nicolaes presents an imaginary, virtual ship. Nicolaes identifies this ship as a pinas. Concerning the assumption that Nicolaes presents in his books a virtual ship, I made this assumption too, before I started to have a closer look at what Nicolaes actually presents.


The text directly following the quoted remark from chapter eight, about his example ship, contains an enigma:


“na welkers maat en gestalte, zoo de zelve recht verstaan wort, men zeer lichtelyk Scheepen van onbegreepen lengte en gebruik, (mutatis mutandis, verandert het geene verandert dient te zyn) zoo wel groote als kleine, na vormen en toestellen kan; want alle regels, even-maat en gelykdeeligheit, blyven van eenderleye aart op alle kiels lengten, 't zy het Schip een kiel heeft van 180, of slechts van 60 voeten lang.

Ik zal hier vaste grondt-slagen, en wetten, hoe men alle Scheeps deelen, ja zelfs een geheel Schip, maken moet, genoegh-zaam trachten ten toon te stellen. Hoewel echter waar is, dat het niet wel doenlyk is, altydt de wis-konstige maat ten vollen na te komen, wegens de menighvuldige, en onderscheidelyke kromme en gebogen gestalten, die men de houten aan een Schip geven moet. Waar vandaan het zeggen komt, dat twee Scheepen, of twee menschen, elkander nimmer ten vollen gelyken. Doch hoe naauwkeuriger d'evenmaat en gelykdeeligheit in het Scheeps-bouwen gevolght wert, hoe volmaakter, cierlyker, sterker, en wel bezeilder het Schip zal zyn”,


“after whose size (this ship red.) and shape, if properly understood, one can very easily make ships of unknown length and use, (mutatis mutandis, after the things are changed that needed to be changed) both large and small, to shape and make; for all rules, equal and proportionate, are of the same kind on all keel lengths, whether the ship has a keel of 180, or just 60 feet in length.

I shall establish firm foundations, and laws, how to make all ship parts, yes, even a whole ship. While it is true, however, that it is not doable, to always follow the exact measure fully, because of the many, various and bent forms in which the wooden parts for a ship must be shaped. Whence comes the saying that two ships, or two men, are never exactly alike. But the more closely the proportion and equality is followed in ship-building, the more perfect, neater, stronger, and more sailable the ship will be.”


The message is quite clear: no matter the length of the keel, if you stick to the recommended ratios you will end up with a good ship.


But strikingly enough Nicolaes does not follow his own recommendations. Chapter nine of Nicolaes’ book starts with around six pages where ratios are given, the ratios about which Nicolaes states: “for all rules, equal and proportionate, are of the same kind on all keel lengths, whether the ship has a keel of 180, or just 60 feet in length”. After these six pages, these ratios are followed by the measurements of his ‘example ship’ a pinas, long 134 feet over stem and stern. These measurements do not follow the given ratios, to say the least. Only one measurement corresponds: the height of the bilge. The other measurements deviate and not in a minor way.

From 40 mentioned measurements one is equal, seventeen differ ten to twenty percent, fifteen differ twenty to fifty percent, five fifty to one hundred percent and two more than one hundred percent.

What is happening here? How is it possible the measurements differ this much from the ratios Nicolaes gives?


To be continued.
















Edited by Philemon1948
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Create New...