Jump to content

wefalck

Members
  • Posts

    5,627
  • Joined

  • Last visited

Reputation Activity

  1. Like
    wefalck got a reaction from GrandpaPhil in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    @Tadheus, thank you very much for your efforts ! However, could you please check on my Web-site first, before posting a link, whether the picture you found has not been already published there. These pictures are all well-known to me and I may want to use them later to illustrate specific points.
     
    *******
     
    And off we go with the actual model construction ...
     
    Materials
     
    I had been contemplating a variety of materials for the hull; for instance Plexiglas® layers with bulwarks made from brass foil. In the end, I choose MDF (medium-density fibre) board, which is available in thicknesses down to 1 mm from architectural model supply houses. Other parts will be constructed from or covered with Bristol board, which is also available in various thicknesses (or rather weights per square metre). The bulwarks etc.. will be made from Pertinax® (phenolic resin impregnated paper, FR-2), which is available in thicknesses down to 0.1 mm. Bristol board and Pertinax® are easily cut with a scalpel, a razor blade or scissors and will not crease or dent as metal foil might. I currently have no facilities for photo-etching large parts, but if I had, perhaps I would have made the bulwarks from brass still. The other advantage is that Bristol board can be readily and permanently glued using white glue. Bonds between large areas of metal foil and Plexiglas® might become detached. Pertinax® can be glued using cyano-acrylate or epoxy-resins.
    While I have been shying away from thermoplastics, such as polystyrene, on account of it being suspicious to be not ‘permanent’, practical experience shows that my plastic models built over 40 years ago are still intact. So I may reconsider my position in this respect. Polystyrene, of course, has several advantageous properties. One has to be sure, however, that it is properly painted to exclude the deteriorating UV-radiation.
     
    The hull and superstructures
     
    The basic bread-and-butter construction of the hull is shown in the pictures below.
     

    Cutting out layers for the hull
     

    Using the drill press as a makeshift disc sander (I have since constructed one)
     

    Using the drill press as an improvised miniature drum sander
     

    The layers of the hull with the barbette and the anchor-pockets cut out
     

    Milling a recess into which later the rubbing strake will be inserted
     
    To be continued ...
  2. Wow!
    wefalck got a reaction from vaddoc in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    Engine-room skylight
     
    The frame of the engine room skylight consists of a an etched brass part, folded up and soldered together. On the inside, grooves have been etched that will serve to locate the protective bars to made from thin copper wire. The lower frame was constructed from Pertinax. The ‘wooden’ gratings on both sides of the lower frame are again etched parts.
     

    Unglazed framework for the engine-room skylight
     
    Once this structure was complete, a square block of the size of the footprint of the skylight was milled from a piece of Plexiglas.
     

    Squaring up a Plexiglas block for the skylight
     
    In the next step the roof-shaped faces were milled on. To this end, a small insert vice was set to the appropriate angle of 40° in a larger vice bolted to the mill table. The fixed jaw of the insert vice pointed upward and the side of the block to be milled rested against it. This ensured that all four inclined faces would have the same angle and would start from the same height with respect to the reference (bottom) face of the block.
     

    Milling the sloping faces
     

    Polishing the sloping faces  
     
    A very smooth surface with little tool marks can be achieved on Plexiglas. The final polishing of the surfaces was done using CRATEX-type drum polishers followed by a felt drum loaded with polishing paste. All in the same vice setting to ensure a flat surface. I was lucky the Plexiglas 'house' fitted like a plug into the skylight frame.
     

    Finished Plexiglas 'glazing' block
     

    Glazed engine room skylight
     
    To be continued ...
  3. Like
    wefalck got a reaction from GrandpaPhil in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    @bear, I must say, you rather embarrass me with your praise   I gather, a professional mechanic would throw up his hands into the air seeing me doing things, being just a self-taught amateur. Actually, collecting old machine tools and their restoration developed into a hobby of its own: http://www.maritima-et-mechanika.org/tools/toolsmain.html
     
    ********
    Back to the subject ….
     
    Rack-and-pinion drive for training the gun
     
    The gun was trained by pinion acting on a circular rack. The pinion was driven from under deck by a sets of gears and a couple of cranks manned by a number of sailors. The chief gunner was able to connect and disconnect the drive with levers from his aiming-stand behind the gun.
    I set up my hand-shaper (http://www.wefalck.eu/mm/tools/shaper/shapers.html) for cutting the rack teeth, but had to throw away the first two attempts because of the poor material and because - again against better knowledge - I did not lock the traverse slide when cutting. The table was removed from the shaper and the home-made dividing head bolted on instead. For lack of a proper tool grinder (another project now in hand) I hand-ground a cutter for the rack teeth (0.1 mm at the bottom) from a rod of high-speed steel. For holding this tool-bit in the shaper, an old lantern-style tool holder from the watch lathe came very handy. The unwanted parts of the ring were cut away on the shaper using ordinary left and right hand lathe tools. Finally the necessary sections were trimmed off with a fine saw blade on the lathe's sawing table.
     

    Hand-shaper set-up for cutting the toothed rack
     

    Cutting the toothed rack with a specially ground tool
     

    Cutting away the unwanted part of the ring with an ordinary tool
     

    Rails and rack provisionally in their place inside the barbette
     
     
    To be continued ...
  4. Like
    wefalck got a reaction from GrandpaPhil in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  5. Like
    wefalck got a reaction from GrandpaPhil in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    Engine-room skylight
     
    The frame of the engine room skylight consists of a an etched brass part, folded up and soldered together. On the inside, grooves have been etched that will serve to locate the protective bars to made from thin copper wire. The lower frame was constructed from Pertinax. The ‘wooden’ gratings on both sides of the lower frame are again etched parts.
     

    Unglazed framework for the engine-room skylight
     
    Once this structure was complete, a square block of the size of the footprint of the skylight was milled from a piece of Plexiglas.
     

    Squaring up a Plexiglas block for the skylight
     
    In the next step the roof-shaped faces were milled on. To this end, a small insert vice was set to the appropriate angle of 40° in a larger vice bolted to the mill table. The fixed jaw of the insert vice pointed upward and the side of the block to be milled rested against it. This ensured that all four inclined faces would have the same angle and would start from the same height with respect to the reference (bottom) face of the block.
     

    Milling the sloping faces
     

    Polishing the sloping faces  
     
    A very smooth surface with little tool marks can be achieved on Plexiglas. The final polishing of the surfaces was done using CRATEX-type drum polishers followed by a felt drum loaded with polishing paste. All in the same vice setting to ensure a flat surface. I was lucky the Plexiglas 'house' fitted like a plug into the skylight frame.
     

    Finished Plexiglas 'glazing' block
     

    Glazed engine room skylight
     
    To be continued ...
  6. Wow!
    wefalck got a reaction from vaddoc in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    Chain-stoppers
     
    One pair of chain stoppers is located immediately behind the hawse pipes as usual. A second pair is placed above the chain locker, which is located immediately in from of the armoured barbette. The bodies of the stoppers are rather complex castings, calling for some complex machining operations in model reproduction. The same basic technique as for the bollards was used. Given the complex shape, however, machining is not possible in one set-up. For certain operations the axis of the spigot has to be perpendicular to the milling machine, while for others, such as drilling it has to be parallel. For the latter and for milling the various slots, I choose to transfer the dividing head to the lathe. This has the advantage that its centre line is at the centre of the lathe spindle.
     

    Milling the profile of the fore chain stoppers
     

    Milling operations using a dividing head in the lathe
     
    The slots were milled using a micro-tool made from a broken carbide drill, the end of which was ground flat. This results in a non-ideal clearance of 0º, while the cutting angle and side rake are that of the original drill bit. However, not much metal is removed so that this doesn't really matter here.
     

    Home-made milling bits made from broken carbide drills ground flat
     
    One set of stoppers was milled from brass, while for the other one I used PMMA (PLEXIGLAS®, PERSPEX), the main reason being that I ran out of brass stock. However, genuine PLEXIGLAS®, is pleasant material to machine and easy on the tools. It holds sharp edges and it easier to see what you are doing than on the shiny brass. Acrylic paints seem to key-in well - basically it is the same molecule, of course. On the downside one may note that small and thin parts are rather brittle. Using diamond-cut carbide tools gives a nice smooth finish, but normal CV- or HSS-tools can also be used.
     

    Milling in an upright collet-holder on the milling machine
     
    While for the bollards and the front pair of stoppers the spigot could be on the geometric centre of the part, making it easy to measure while machining, for the after stoppers I had to place the spigot to the centre of the pipe down to the locker, so that the concentric rounded edges could be milled. The pictures show this operation.
     

    Round-milling the body of the after chain-stopper using the rotary table of the milling machine
     
    The stoppers have now completed with etched brass releasing levers, etc. The fore stoppers were also soldered to surface etched base plates.
     

    The completed chain-stoppers (right column, the grid of the cutting mat is 10 mm x 10 mm)
     
    To be continued ...
  7. Like
    wefalck got a reaction from GrandpaPhil in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The base for the double bollards were intended to be a surface-etched parts, but I was not happy with the results I produced in my simple home-etching arrangement. So I decided to make them from solid brass. Solid brass was easier to handle for machining than brass sheet. Nevertheless the envisaged machining operations prompted me to make a couple of gadgets, fixtures, for the mill and the lathe.
     

    Drilling of the bollard-bases in the work-holding block
     
    Milling around the edges or on top of flat material always presents work-holding problems. Worse, if several identical parts have to be produced. Hence I divined a work-holding block with several clamps and stops running in a T-slot.
     

    Milling a bevel to the bollard-bases
     
    Similarly holding small parts for cutting off on the circular saw is tricky and best done on the lathe with a special saw table clamped to the top-slide. This saw table allows parts to be safely clamped down for cutting.
     

    Cutting-off individual bollard-bases
     

    The three parts for each bollard (apologies for the poor picture)
     
    The three parts of each bollards were soft-soldered together.
     

    Work-holding for soldering
     

    The finished bollards on the top-left (the other parts will be discussed later)
     
    To be continued ...
  8. Like
    wefalck got a reaction from EricWilliamMarshall in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  9. Like
    wefalck got a reaction from Valeriy V in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  10. Like
    wefalck got a reaction from Bob Legge in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  11. Like
    wefalck got a reaction from Story in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  12. Like
    wefalck got a reaction from Mike Y in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  13. Like
    wefalck got a reaction from Tadeusz43 in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    The 30.5 cm Rk/l22 gun
     
    The main armament of the WESPE-Class was a massive 30.5 cm (12”) Krupp breech-loading rifled gun (Ringkanone, abrev. Rk). This caliber stayed the bigges in the German Imperial Navy for many decades and well into the Dreadnought-era. It is this gun that essentailly made the boats in floating batteries, rather than ‘real’ ships.
     
    http://www.dreadnoughtproject.org)
     
    A few years ago a detailed dtawing of gun-mount originating in the adminralty archives in Berlin surfaced on the site ‘dreadnought’. The arrangements for all the heavy Krupp guns of the time were similar, so that a visit to the Finnish fortress Suomenlinna (http://www.maritima-et-mechanika.org/maritime/models/wespe/suomenlinna/suomenlinna.html) off Helsinki was helpful; here a number of Russian clones of 28 cm coastal Krupp guns are still in place since the time, when Finnland was part of the Russian Empire.
     

    28 cm Krupp-clone coastal guns in the Suomenlinna-fortress off Helsinki
     
    Rails for the Lower Carriage
    The lower carriage of the gun is supported on four races that run on semicirucular cast-iron rails bolted to the deck inside the barbette.
    These rails need to go into their place in the barbette early during the construction. The same applies to the semi-circular toothed rack that is part of the gun-training machinery. I decided to make the rails from steel, even though ferrous metals in model construction are frowned upon by many. My justifications were that it is difficult to represent cast iron or steel by paint and that there hundreds of models in museums around the world that contain iron. I have used steel in models some twenty years ago and presumably due to the lacquering they shows no signs of rust.
     

    Roughing out the rails from a metal disc with the backing of a wooden disc
     

    Grooving the races with a specially ground bit
     
    Cutting thin disks from round stock of large diameter is a pain I wanted to avoid. Against my better knowledge I picked a suitably sized steel washer as starting material. Unfortunately, the steel used did not machine very well and lot effort was spent to avoid chatter marks while turning and to obtain a reasonably good finish. The various types of wheel collets and chucks available for the watchmaking lathe came into good use for working on inside and outside diameters of these discs. The rails were shaped using a specially ground forming tool.
     

    Cutting out the inside of the large ring for the tail-races of the lower carriage, while holding it in a so-called bezel-chuck
     

    Trimming the outside of the smaller forward ring holding the material in a so-called wheel-chuck
     

    The rails laid out in the barbette
     
    To be continued ...
  14. Like
    wefalck got a reaction from Piet in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  15. Like
    wefalck got a reaction from NenadM in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  16. Like
    wefalck got a reaction from mtaylor in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  17. Like
    wefalck got a reaction from dgbot in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  18. Like
    wefalck got a reaction from mtaylor in Fastening Spar to Mast   
    It is always best to consult reference books on the period of the ship you are modelling. I believe the FAIR AMERICAN dates from the late 18th century, so there should be several of books on rigging ships of that period that you could consult. Some of them may be even available on-line. I believe Darcy Lever's early 19th century book is available for downloading somewhere.
     
    One has to distinguish between yards that would normaly stay put and those that would be hoisted up when setting sail. The method of keeping the yard near the mast would differ. As noted by the others before me, a rope, the 'parrel' would be slung around the mast and the yard in a particular fashion. In your period it may be in two parts which have been spliced around yard and has an eye-splice in each end; the two ends with eye-splices would be taken around the mast and lashed together. On the hoisting yards you may find also wooden cleats with a half-round hole; a rope- or iron parrel with hinges would secure such yard to the mast. Sometimes parrels could also be loosened or tightened from deck level; this may be necessary when bracing-up hard the yards.
     
    The best model solution is always the one closest to the prototype, irrespective of scale. Due to the limits of material dimensions (and your dexterity) you may have to simplify things. However, I would dare say that the parrel-arrangement as discussed above could be even reproduced in a 1:200 scale and believe there are examples for it on the Web (look for miniaturist, such as McCaffery). Your ambition is the limit ...
  19. Like
    wefalck got a reaction from mtaylor in what add ons for a Proxxon mill   
    The standard type of equipment was already mentioned.
     
    Concerning tooling: If you are planning to mill wood, plastics or aluminium, carbide end-mill with 3 mm or 1/8" shaft come handy. They can be bought at a reasonable price e.g. at electronic bay and come from e.g. the aerospace or circuitboard industry, where they are replaced before they get dull - it is cheaper to replace them before they get dull than to throw away ruined work-pieces. For our purposes they are still good enough.
     
    On a machine like the MF70 I would always use drills with thickened shaft, they run much more concentric. They come with 1 mm, 1.5 mm and 1/8" shaft, depending on the size. Again carbide drills down to very small sizes are available from the same source mentioned above, but beware they are very fragile.
     
    If you have also a lathe, you will probably begin to make useful accessories for the mill. I could think, for instance, of a fly-cutter that allows you to mill flat larger work-pieces. Another useful piece would be an indexing block for the PROXXON-collets that can be held in the vice - great for quickly milling-on flats/squares.
     
    Talking about vices: my favourite ones are the screwless ones that were originally designed for e.g. EDM-machining. They come in small sizes and the movable jaw is pulled towards the workpiece as well as down.
  20. Like
    wefalck got a reaction from shihawk in what add ons for a Proxxon mill   
    The standard type of equipment was already mentioned.
     
    Concerning tooling: If you are planning to mill wood, plastics or aluminium, carbide end-mill with 3 mm or 1/8" shaft come handy. They can be bought at a reasonable price e.g. at electronic bay and come from e.g. the aerospace or circuitboard industry, where they are replaced before they get dull - it is cheaper to replace them before they get dull than to throw away ruined work-pieces. For our purposes they are still good enough.
     
    On a machine like the MF70 I would always use drills with thickened shaft, they run much more concentric. They come with 1 mm, 1.5 mm and 1/8" shaft, depending on the size. Again carbide drills down to very small sizes are available from the same source mentioned above, but beware they are very fragile.
     
    If you have also a lathe, you will probably begin to make useful accessories for the mill. I could think, for instance, of a fly-cutter that allows you to mill flat larger work-pieces. Another useful piece would be an indexing block for the PROXXON-collets that can be held in the vice - great for quickly milling-on flats/squares.
     
    Talking about vices: my favourite ones are the screwless ones that were originally designed for e.g. EDM-machining. They come in small sizes and the movable jaw is pulled towards the workpiece as well as down.
  21. Like
    wefalck got a reaction from GLakie in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  22. Like
    wefalck got a reaction from Mirabell61 in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  23. Like
    wefalck got a reaction from popeye the sailor in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  24. Like
    wefalck got a reaction from CaptainSteve in Cutty Sark by NenadM   
    I have been using an undercoat of Prince-August (a French packaging of Vallejo it seems) 'bois' (='wood') acrylic underpaint and then a thin layer of acrylic 'wood stain' from a DIY. This then was 'weathered' using thin washes of acrylic 'burnt umber'. The colours in the photograph below are sligthly distorted due to the mixed-temperature lighting, but comes close to what teak might look like (though the intention was actually tarred, weathered oak, hence also the weathering with white pastel):
     

  25. Like
    wefalck got a reaction from EricWilliamMarshall in SMS WESPE 1876 by wefalck – 1/160 scale - Armored Gunboat of the Imperial German Navy - as first commissioned   
    Engine-room skylight
     
    The frame of the engine room skylight consists of a an etched brass part, folded up and soldered together. On the inside, grooves have been etched that will serve to locate the protective bars to made from thin copper wire. The lower frame was constructed from Pertinax. The ‘wooden’ gratings on both sides of the lower frame are again etched parts.
     

    Unglazed framework for the engine-room skylight
     
    Once this structure was complete, a square block of the size of the footprint of the skylight was milled from a piece of Plexiglas.
     

    Squaring up a Plexiglas block for the skylight
     
    In the next step the roof-shaped faces were milled on. To this end, a small insert vice was set to the appropriate angle of 40° in a larger vice bolted to the mill table. The fixed jaw of the insert vice pointed upward and the side of the block to be milled rested against it. This ensured that all four inclined faces would have the same angle and would start from the same height with respect to the reference (bottom) face of the block.
     

    Milling the sloping faces
     

    Polishing the sloping faces  
     
    A very smooth surface with little tool marks can be achieved on Plexiglas. The final polishing of the surfaces was done using CRATEX-type drum polishers followed by a felt drum loaded with polishing paste. All in the same vice setting to ensure a flat surface. I was lucky the Plexiglas 'house' fitted like a plug into the skylight frame.
     

    Finished Plexiglas 'glazing' block
     

    Glazed engine room skylight
     
    To be continued ...
×
×
  • Create New...